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ABSTRACT
Relativistic jets are observed in both active galactic nuclei (AGNs) and ““microquasars ÏÏ in our Galaxy.

It is believed that these relativistic jets are ejected from the vicinity of black holes. To investigate the
formation mechanism of these jets, we have developed a new general relativistic magnetohydrodynamic
(GRMHD) code. We report on the basic methods and test calculations to check whether the code repro-
duces some analytical solutions, such as a standing shock and a Keplerian disk with a steady state infall-
ing corona or with a corona in hydrostatic equilibrium. We then apply the code to the formation of
relativistic MHD jets, investigating the dynamics of an accretion disk initially threaded by a uniform
poloidal magnetic Ðeld in a nonrotating corona (either in a steady state infall or in hydrostatic
equilibrium) around a nonrotating black hole. The numerical results show the following : as time goes
on, the disk loses angular momentum as a result of magnetic braking and falls into the black hole. The
infalling motion of the disk, which is faster than in the nonrelativistic case because of general relativistic
e†ects below is the Schwarzschild radius), is strongly decelerated around by centrifugal3rS (rS r \ 2rSforce to form a shock inside the disk. The magnetic Ðeld is tightly twisted by the di†erential rotation,
and plasma in the shocked region of the disk is accelerated by the J Â B force to form bipolar rela-
tivistic jets. In addition, and interior to, this magnetically driven jet, we also found a gas-pressureÈdriven
jet ejected from the shocked region by the gas-pressure force. This two-layered jet structure is formed not
only in the hydrostatic corona case but also in the steady state falling corona case.
Subject headings : accretion, accretion disks È black hole physics È galaxies : jets È MHD È relativity

1. INTRODUCTION

Knots from many active galactic nuclei (AGNs) some-
times propagate with apparent velocities exceeding the
speed of light (Pearson et al. 1981 ; Hughes 1991). This phe-
nomenon, called superluminal motion, is thought to be due
to a relativistic jet with Lorentz factor 2È20 propagating
almost directly along the line of sight (Rees 1966). Since the
velocity of the jet is highly relativistic, the jet is believed to
be accelerated in the vicinity of a supermassive black hole
that is located in the center of the AGN. Recently, X-ray
and radio observations have revealed compelling evidence
of the existence of black holes (Tanaka et al. 1995 ; Miyoshi
et al. 1995). Superluminal motion has been observed from
““microquasars ÏÏ GRS 1915]105 and GRO J1655[40 in
our Galaxy (Mirabel & Rodriguez 1994 ; Tingay et al. 1995).
In spite of the vast di†erence in the luminosity and the size
of the microquasars in our Galaxy and those of AGNs, both
are believed to be powered by gravitational energy released
during accretion of plasma onto black holes (Lynden-Bell
1969 ; Rees 1984).

One of the most promising models for jet formation is the
magnetic acceleration model (Blandford & Payne 1982).
This mechanism has been proposed not only for AGN jets
(e.g., Lovelace 1976 ; Matsumoto et al. 1996 ; Pelletier et al.
1996 ; Meier et al. 1997) but also for protostellar jets (e.g.,
Pudritz & Norman 1986 ; Uchida & Shibata 1985 ; Shibata
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& Uchida 1986 ; Ouyed, Pudritz, & Stone 1997). According
to a recent study of magnetically driven jets by Kudoh &
Shibata (1995, 1997a, 1997b ; Kudoh, Matsumoto, &
Shibata 1998), the terminal velocity of a jet is comparable to
the rotational velocity of the disk at the foot of the jet.
Therefore, to produce a relativistic jet, the foot should be
near the event horizon of a black hole. Recently, the X-ray
Ka lines from the inner regions of an accretion disk around
a supermassive black hole in an AGN have been observed
(Bromley, Miller, & Pariev 1998). The observations show
that this inner edge of the iron Ka line emission region is
within 2.6^ 0.3 times the Schwarzschild radius rS4event horizon of a nonrotating black hole2GMBH/c2Èthe
(G is the gravitational constant, and is the mass of theMBHcentral black hole). The inner region may be related to the
jet itself. In fact, observations show evidence of a disk-jet
interaction in the microquasar GRS 1915]105 (Eikenberry
et al. 1998). In the region, the plasma and the magnetic Ðeld
interact with each other in a complicated manner in the
general relativistic framework, so that a general relativistic
magnetohydrodynamic (GRMHD) treatment is needed.

Analytic models of relativistic stationary Ñows from
black holes and pulsar magnetospheres have been devel-
oped (see review by Beskin 1997) under the assumption of
Ðxed poloidal magnetic Ðeld (Camenzind 1986 ; Takahashi
et al. 1990 ; Takahashi & Shibata 1998), force-free magnetic
Ðeld (Okamoto 1992), self-similar solutions (Li, Chiueh, &
Begelman 1992), or asymptotic solutions (Begelman & Li
1994 ; Tomimatsu 1994). To study the nonsteady properties
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of jets propagating through magnetized plasmas, several
authors have performed numerical simulations using
special relativistic MHD codes (Koide, Nishikawa, & Mutel
1996 ; van Putten 1996 ; Koide 1997 ; Nishikawa et al. 1997,
1998). In the general relativistic regime, Hawley & Smarr
(1985) carried out (nonmagnetic) hydrodynamic simulations
of jet formation near a black hole, while Yokosawa (1993)
performed general relativistic MHD simulations of accre-
tion onto a rotating black hole. However, no one has yet
performed full GRMHD numerical simulations of the for-
mation of jets in a vicinity of a black hole except for a brief
paper by Koide, Shibata, & Kudoh (1998). In that paper,
the black hole is assumed initially to have a hot corona in
hydrostatic equilibrium around it, with a cold Keplerian
disk embedded inside the corona. The Keplerian disk is
threaded by a uniform poloidal magnetic Ðeld initially. The
numerical results show that a relativistic jet is formed with a
two-layered shell structure. The inner jet is fast and acceler-
ated by high gas pressure resulting from a strong collision
between the infalling disk gas and the disk gas stagnated by
the centrifugal barrier and/or the high-density region of the
hydrostatic corona near the horizon. The outer jet is slow
and accelerated by the magnetic Ðeld as shown in nonrela-
tivistic MHD simulations (Uchida & Shibata 1985 ; Shibata
& Uchida 1986 ; Kudoh & Shibata 1995, 1997a, 1997b).

In this paper, we present the basic methods, test runs, and
applications of the full GRMHD numerical simulations.
The applications contain the Ðrst calculation of a relativistic
jet formation in a free-falling corona around a black hole
surrounded by the accretion disk. We have developed a
GRMHD code using the simpliÐed total variation dimin-
ishing (TVD) method. The method is able to resolve the
structure and evolution of the accretion Ñow near the
horizon and the production of the jet.

In the next section, the basic methods of the simulation
are presented. In ° 3, we report on the test runs of the code.
In °° 4 and 5, the applications to the formation of MHD jets
in the vicinity of the black hole are shown. In the last
section, the discussion and summary are presented.

2. NUMERICAL METHODS

2.1. Basic Equations
Our study is based on the general relativistic conserva-

tion laws of mass, momentum, and energy of single-
component conductive Ñuids and on Maxwell equations
(Weinberg 1972 ; Thorne, Price, & Macdonald 1986),

+l(oUl)\ 0 , (1)

+l T
g
kl\ 0 , (2)

Lk Flj] LlFjk] Lj Fkl \ 0 , (3)

+k Fkl\ [Jl , (4)

where Ul and Jl are four-velocity and four-current density,
respectively. Scalar values o, p, and e are proper mass
density, proper pressure, and proper total energy density
e4 oc2] p/(![ 1), respectively. Here ! is the speciÐc-heat
ratio ; is covariant derivative ; and the general relativistic+kenergy momentum tensor is given byT

g
kl

T
g
kl\ pgkl] (e] p)UkUl]Fpk Flp[ gklFjiFji/4 , (5)

where gkl is metric, Fkl is the electromagnetic Ðeld-strength
tensor, and Ak is four-vector potential.Fkl\ Lk Al [ LlAk,We assume that the o†-diagonal elements of the metric gkl

vanish,

gkl\ 0 (k D l) , (6)

and we put

h0\ J [ g00 , h1\ Jg11 , h2\ Jg22 , h3\ Jg33 .

(7)

To perform the simulations, we use the 3 ] 1 form of
these equations (see Appendix A). With the assumption of a
diagonal metric, the equations reduce to the familiar form
of special relativistic magnetohydrodynamics (Koide et al.
1996 ; Koide 1997) with general coordinates, plus the addi-
tion of gravitational terms and a scale factor In theseh0.equations, the velocity of light c is written explicitly, so that
when we take the nonrelativistic limit of these equations
(c] O), they reduce to standard Newtonian magneto-
hydrodynamics. We call these the general relativistic MHD
(GRMHD) equations. We assume the inÐnite electric con-
ductivity condition,

Flk Ul\ 0 . (8)

Using this condition, the equations (1)È(3) close self-
consistently. Vectors such as velocity and magnetic Ðeld B¿
are deÐned in the local frame (see Appendix A for an explicit
expression). Equation (4) is used to calculate the electric
charge density and current density J (see Appendix A).o

cFor the case of resistive MHD Ñow in a black hole magne-
tosphere, the reader is referred to the analytic models pre-
sented by Kudoh (1994), Kudoh & Kaburaki (1996), and
Khanna (1998).

2.2. Numerical Scheme
We have developed a three-dimensional GRMHD

numerical code that employs the simpliÐed total variation
diminishing (TVD) method (see Appendix D), which was
developed by Davis (1984) for violent phenomena such as
shocks. This method is similar to Lax-Wendro†Ïs method
with the addition of a di†usion term formally. In order to
integrate the time-dependent conservation laws, we need
only the maximum speed of waves and not each eigenvector
or eigenvalue of the Jacobian.

We tested this method using special relativistic simula-
tions of sound and magnetosonic shock waves, checking the
energy conservation law and its propagation properties.
Furthermore, we conÐrmed that, in the nonrelativistic limit,
the code gives the same results on calculations of the
Kelvin-Helmholtz instability and magnetized jet pro-
duction as a standard Newtonian (nonrelativistic) MHD
code. Note that in the GRMHD simulations we have to
check not only GaussÏs law for the magnetic Ðeld, $ Æ B \ 0,
but also the charge conservation law, Lo

c
/Lt] $ Æ J \ 0,

where and are charge density ando
c

J 4 (J1, J2, J3)current density calculated by equation (4) with four current
density i \ 1, 2, 3 (see AppendixJk \ (ch0~2o

c
, (h0 h

i
)~1J

i
),

A). In our calculation, the conservation law is satisÐed quite
well, within very small error of order and L10~5B0/L2. (B0are the characteristic magnetic Ðeld strength and length,
respectively. For example, the characteristic length L is inrSthe general relativistic case.)

With the simpliÐed TVD method, we obtain only the
conserved quantities D, P, v, and B directly at each step
from the di†erence equations. In the next step, we must
calculate and p from D, P, v, and B from equations (A4),¿
(A5), and (A6) in Appendix A. To do this, we solve two
nonlinear, simultaneous algebraic equations with unknown
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variables x 4 c[ 1 and y 4 c(¿ Æ B)/c2,

x(x ] 2)
C
!ax2] (2!a [ b)x ] !a [ b ] d ] !

2
y2
D2

\ (!x2]2!x]1)2[q2(x]1)2]2py ] 2pxy]b2y2] ,

(9)
C
!(a [ b2)x2] (2!a [ 2!b2[ b)x ] !a [ b ] d

[ b2] !
2

y2
D
y \ p(x ] 1)(!x2] 2!x ] 1) , (10)

where a \ D] v/c2, b \ (![ 1)D, d \ (1[ !/2)B2/c2,
q\ P/c, b \ B/c, and p \ B Æ P/c2. Note that in the absence
of the magnetic Ðeld equation (9) becomes the equation in
the relativistic hydrodynamic case, as derived by Duncan &
Hughes (1994), and equation (10) becomes a trivial equa-
tion. The equations are solved at each cell using a two-
variable Newton-Raphson iteration method. We then easily
calculate p and using x, y, D, P, v, and B. This method is¿
identical to that in the special relativistic case (Koide et al.
1996 ; Koide 1997).

2.3. Metric and Coordinates
The Schwarzschild metric, which describes the spacetime

around the black hole at rest, is used in the calculation as
where a is the lapseh0\ a, h1\ 1/a, h2\ r, h3\ r sin h

function, and r is the radial coordinate ina 4 (1[ rS/r)1@2,the Boyer-Lindquist set (ct, r, h, /). However, we actually
use the modiÐed tortoise radial coordinate, x\ ln (r/rS[ 1).
With a uniform mesh in this coordinate, along with the
azimuthal / and polar coordinates h, the radial mesh width
of the Boyer-Lindquist coordinates is proportional to

Since the eigenspeed of the MHD waves near ther[ rS.black hole is very small because of the lapse function a, the
CFL numerical stability condition is not severe near the
black hole where the mesh width is smallest. Rather, it is
most severe near This indicates that these modi-r \ 1.5rS.Ðed tortoise coordinates are appropriate for the calculation
both near and far from the black hole.

3. TEST OF THE CODE

3.1. T ransonic Solutions
We Ðrst shall discuss tests of the GRMHD code. The Ðrst

test checks the steady state infall of a Ðnite pressure gas into
the black hole (Bondi & Hoyle 1944). This Ñow is approx-
imately in free fall, and we refer to it as free fall below. We
assume spherical symmetry and a polytropic equation of
state p P o!. The equation of the motion of the Ðnite gas
can be integrated to give

F\
AH
ac

[ 1
BA

ar2c v
c
B!~1

, (11)

where F (a kind of adiabatic invariant) and H (D speciÐc
enthalpy) are constants of the motion and a and c are the
lapse function and Lorentz factor. Here H and F are written
as

H \ a0 c0
A
1 ] !

![ 1
p0

o0 c2
B

, (12)

F\ !
![ 1

p0
o0 c2

A
a0 r02 c0

v0
c
B!~1

, (13)

with the values and evaluated at an arbi-a0, c0, p0, o0, v0trary point Figure 1a shows the contour map of Fr \ r0.

FIG. 1.ÈInitial conditions and simulation results of a transonic solu-
tion with !\ 4/3 and H \ 1.3. (a) Transonic solution (thick solid line),
solutions for Ðnite pressure gas (thin solid lines), and sonic point (dash-
dotted line). The dotted lines show the contour map of P/Qc2 (see ° 3.2). (b)
Initial accretion velocity (dotted line) and simulation results at t \ 1qS(solid line). They are in good agreement with each other, which shows the
validity of the simpliÐed TVD GRMHD code.

(thin solid lines) when H \ 1.3 and !\ 4/3. Each contour
line gives the velocity distribution of the steady state gas
Ñow. The thick solid line indicates the transonic solution,
which passes through the sonic point from the subsonic to
supersonic region. Let us write the transonic Ñow velocity,
density, and pressure by andv\ vffc, o \offc, p \ pffc,
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respectively. The sonic point is given by the condition,

LF
Lc

\ 0 ,
LF
La

\ 0 , (14)

for a given H and !. The former equation LF/Lc\ 0 (Fig.
1a, dash-dotted line) gives the sonic Ñow condition v\ v

s
4

, where h is the relativistic enthalpy,(!p/h)1@2c
h 4 oc2] !p/(![ 1). Therefore the upper and lower
regions of the dash-dotted line correspond to the super-
and/or subsonic Ñow, respectively. The simultaneous equa-
tions (14) reduce to

(H2[ 1)x3]
A9
4

[ 2gH2
B
x2

]
A
H2g2[ 33

42
B
x ]

A3
4
B3\ 0 , (15)

where g 4 (3![ 2)/4(![ 1). The velocity at r \x 4 r/rS,is determined by which is given byxrS v\ v
s
,

a \ H(c~2]![ 2)
(![ 1)c

. (16)

In Figure 1a, the sonic point of the transonic solution is
located at (The dotted lines show the contour of ther \ 3rS.speciÐc momentum.) Figure 1b shows the time evolution of
the transonic solution calculated by the simpliÐed TVD
method in the region We use 300 mesh1.1rS¹ r ¹ 20rS.points along the radial coordinate. In this test case, the
mesh spacings at and arer \ 1.1rS r \ 20rS 1.7 ] 10~3rSand respectively. The solid line shows the infall0.35rS,velocity at and the dashed line shows the initialt \ 1qS,velocity. These lines are identical with each other, showing
that the simpliÐed TVD method reproduces the transonic
solution quite well.

3.2. T ransonic Solution with a Shock
Next we performed a calculation of transonic infall with a

shock. The parameters, ! and H are the same as those in the
above situation : !\ 4/3 and H \ 1.3. We considered the
case where a standing shock is located at r \ 4rS 4 rshock.The Rankine-Hugoniot conditions at the shock front nor-
mally are given by the equations for conservation of mass
Q4 ocu, speciÐc enthalpy H/a \ ch/oc2, and total pressure
P4 hu2] p, where u is four-velocity, u 4 cv/c. However, in
our test we use the continuity condition on P/Qc2 instead of
the last condition on the total pressure P. Here we consider
only the Ñow with H \ 1.3 so that the second continuity
condition on H/a is automatically satisÐed. The proper
mass density o is determined to satisfy the Ðrst continuity
condition about Q, independent of the condition of H/a and
P/Qc2. This is because the latter conditions contain o only
as the ratio with other quantities such as p. Therefore, it is
enough to take care of only the last continuity condition of
P/Qc2. Figure 2a shows the contour map of F (thin solid
lines) and P/Qc2 (dotted lines). The down-stream condition
is given by the transonic solution described in ° 3.1 without
the shock.The up-stream condition at the shock front is
determined by the Rankine-Hugoniot relation :

P2
Q2 c2\ P1

Q1 c2\ 1
u1

CH
a

u12
c1

] ![ 1
!

A H
ac1

[ 1
BD

(17)

where subscripts 1 and 2 denote the up-stream and down-
stream quantities, respectively. The up-stream Ñow is calcu-

FIG. 2.ÈInitial conditions and simulation results of a transonic solu-
tion with a shock wave at Here !\ 4/3 and H \ 1.3. (a) Transonicr \ 4rS.solution with a standing shock wave at (thick solid line), solutionsr \ 4rSfor Ðnite pressure gas (thin solid lines), and sonic point (dash-dotted line). At
the shock front, the up-stream and down-stream conditions have the same
values of P/Qc2, which are shown by the contour map of dotted lines. (b)
Initial accretion velocity (dotted lines) and simulation results at t \ 1qS(solid lines). The velocity jump at the shock front is smoothed out slightly
owing to the simpliÐed TVD scheme. However, the other part is calculated
perfectly. On the whole, the transonic solution with the shock is calculated
properly by our code.

lated by the free-fall gas equation (11). Note that the
condition L(P/Qc2)/Lc\ 0 provides the (sonic point).v\ v

sTherefore, the transition due to the shock should cross the
sonic point (v\ v

s
).

Figure 2b shows the initial velocity (dashed line) and the
velocity at (solid line), which is calculated by thet \ 1qS
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simpliÐed TVD scheme. It shows that the shock is smeared
a little numerically. However, on the whole, the transonic
solution with a shock is calculated stably by the code.

3.3. Keplerian Motion in a Free-Fall Corona
Here we check the relativistic Keplerian motion in a

transonic free-fall corona around a Schwarzschild black
hole. The initial state of the corona is given by the transonic
solution without a shock (see ° 3.1), and the sonic point is
located at for !\ 5/3 and H \ 1.3. We initializer \ 1.6rSthe Keplerian disk in the corona as follows. The disk
is located in the region Inr [ r

D
4 3r

s
, o cot h o\ d\ 1/8.

this region, the density is 100 times that of the back-
ground corona (Fig. 3c), the azimuthal component of the
velocity is the relativistic Keplerian velocity vÕ \ vK 4

and its poloidal component vanishes (Fig.c/[2(r/rS [ 1)]1@2,
3a). (Note that this equation reduces to the Newtonian

Keplerian velocity when the nonrelativisticvÕ\ (GM/r)1@2
limit is taken.) The pressure of the corona and therS/r > 1
disk are assumed to be equal to that of the transonic solu-
tion. The initial conditions of the whole plasma around the
black hole are given as

o \ offc ] odis (18)

odis\
4
5
6
0
0
100offc if r [ r

D
and o cot h o\ d ,

0 if r ¹ r
D

or o cot h oº d ,
(19)

(v
r
, vh, vÕ) \

4
5
6
0
0
(0, 0, vK) if r [ r

D
and o cot h o\ d ,

([vffc, 0, 0) if r ¹ r
D

or o cot h oº d ,
(20)

p \ pffc , (21)

where we set d \ 0.125. The smoothing length is At0.3rS.the inner edge of the disk falls slightly inwardt \ 10qS,

FIG. 3.ÈResults of Keplerian disk motion in a free-fall (steady state falling) corona (transonic solution). The conditions of the transonic solution are
!\ 4/3, H \ 1.3. The density of the Keplerian disk is 100 times that of the corona. Black region shows the black hole. (a) The poloidal velocity in the initial
condition. (b) The poloidal velocity at (c) The proper mass density in the initial condition. (d) The proper mass density at The Kepleriant \ 10qS. t \ 10qS.disk is stable, as expected.
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FIG. 4.ÈResults of sub-Keplerian disk motion in a free-fall (steady state falling) corona (transonic solution). The conditions of the transonic solution are
!\ 4/3 and H \ 1.3. The azimuthal velocity of the disk is 80% of the Keplerian velocity. The density of the sub-Keplerian disk is 100 times that of the
corona. Black region shows the black hole. (a) The poloidal velocity in the initial condition. (b) The poloidal velocity at (c) The proper mass densityt \ 18qS.in the initial condition. (d) The proper mass density at We can see the deceleration of the fall of the disk around The high-density region ist \ 18qS. r \ 3rS.limited at r º 2rS.

numerically (Figs. 3b and 3d). However, on the whole, the
disk rotates stably and the transonic corona is also steady.

3.4. Sub-Keplerian Motion in a Free-Fall Corona
We also performed a simulation with a sub-Keplerian

disk in a transonic free-fall corona. The initial condition is
the same as that of the previous Keplerian disk case (Figs.
4a and 4c) except for the azimuthal velocity, which is 80% of
the Keplerian velocity, in the disk. Initially, thevÕ \ 0.8vKdisk begins to fall toward the black hole, but the Ñow stops
around zD 0 at (Fig. 4b), with a high-r D 3rS, t \ 18qSdensity disk region forming at that point (Fig. 4d). This
drastic deceleration is due to a centrifugal barrier. The
energy conservation equation for the accretion of the test
particle is

K ] V \ E , (22)

where K corresponds to the general relativistic kinetic
energy of the motion projected onto the radial coordinate,

V is the e†ective potential,K 4 log (1[ v12/c2)~1@2,
V 4 log [a(1] l2/r2)1@2], and E is the general relativistic
total energy. Here l is the normalized angular momentum

The critical point is determined by LV /Lr \ 0,l 4 rcvÕ/c.which yields a function of l, r(l) \ [l2 [ l(l2[ 3rS2)1@2]/rS.With respect to the negative energy motion (E\ 0), the
location of the critical point is restricted to 2rS¹ r(l)¹ 3rS,where the equal signs occur when andl \ 2rS l\ J3r S,respectively. This point corresponds to the watershed of the
accretion Ñow, which is never seen in nonrelativistic cases.
Above the watershed, the Ñow is stopped or decelerated by
centrifugal force. On the other hand, below the watershed,
the large gradient of the e†ective potential accelerates the
material very rapidly toward the black hole horizon, where
the infall velocity becomes the speed of light c (see Fig. 4b).
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FIG. 5.ÈResults of Keplerian disk motion in a hydrostatic equilibrium corona. The conditions of the corona are !\ 5/3 and The density of thev
s
\ 0.4c.

Keplerian disk is 400 times that of the background corona. Black circle shows the black hole. (a) The initial poloidal velocity. (b) The poloidal velocity at
(c) The initial proper mass density. (d) The proper mass density at The Keplerian disk is calculated stably.t \ 10qS. t \ 10qS.

It is remarkable that the sub-Keplerian disk does not fall
into the black hole monotonically ; this behavior is impor-
tant for the formation of the jet around the black hole.

3.5. Keplerian Motion in a Hydrostatic Corona
To check the code, we also computed the Keplerian

motion of a disk embedded in a hydrostatic corona around
a Schwarzschild black hole (black region in Fig. 5). The disk
is located at the same place as in the previous section, but
the mass density of the disk is 400 times that of the back-
ground corona. Here the hydrostatic corona around the
black hole is given by

ohsc\ o0 exp
G

[ !
v
s
2 c2[log h0[ log h0(rD)]

H
, (23)

p \ v
s
2

1 [ v
s
2/(![ 1)c2

ohsc
!

, (24)

where is the proper coronal mass density ato0 r \ r
D

\ 3rS,is the constant sound velocity of the Ðducial observer,v
s h 4 oc2] !p/(![ 1). We setv
s
4 c(!p/h)1@2, v

s
\ 0.41c.

Figures 5a and 5c show the initial poloidal velocity and
proper mass density, respectively. The calculation region is

with the modiÐed tortoise coordinates. The high-r ¹ 20rSdensity region is located in the disk and near the black hole
horizon ; the toroidal (azimuthal) velocity component is the
relativistic Keplerian velocity, while the poloidal com-
ponent vanishes initially. At the inner edge of thet \ 10qS,disk falls slightly toward the black hole, which is seen as a
change in the density at the inner edge of the disk (Fig. 5d).
However, compared with the initial Keplerian velocity, the
infall velocity is too small to be seen in the velocity plot
(Fig. 5b), where the unit length of the vector corresponds to
the light speed c. This falling motion is due mainly to the
smoothing of the initial azimuthal velocity. This result con-
Ðrms that the stable state of the Keplerian disk and hydro-
static equilibrium are calculated properly by the code.
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4. JET FORMATION FROM MAGNETIZED DISK IN A

FREE-FALL CORONA

4.1. Initial and Boundary Conditions
The initial state of the simulation consists of two parts : a

background corona around the black hole and an embed-
ded accretion disk (Fig. 6a). In this section, the coronal
plasma initially consists of a transonic free-fall Ñow (as in
the transonic Ñow test cases) with !\ 5/3 and H \ 1.3
(° 3.3). Here the sonic point is located at Ther \ 1.6rS.accretion disk is located at o cot h o¹ 0.125, r º r

D
\ 3r

sand rotates around the black hole with the Keplerian veloc-
ity In this case, the rotational veloc-vK \ c/[2(r/rS [ 1)]1@2.
ity of the disk is 50 % of light velocity at its inner edge (r \

The mass density of the disk is 100 times that of3r
s
, z\ 0).

the background corona.
In addition, a magnetic Ðeld threads the accretion disk

vertically. We use the Wald solution for a nonrotating black
hole : which describes aB

r
\ B0 cos h, Bh \[aB0 sin h,

uniform magnetic Ðeld around a Kerr black hole (Wald
1974). At the inner edge of the accretion disk, the proper

velocity is in a typical case withAlfve� n vA \ 0.015c B0\
where velocity in the Ðducial observer is0.3(o0 c2)1@2, Alfve� n

deÐned by

vA 4
B

Jo ] [!p/(![ 1)] B2]/c2
. (25)

The plasma beta of the corona at is b 4 p/r \ 3rSB2\ 1.40.
The simulation is performed in the region 1.1rS ¹ r ¹

0 ¹ h ¹ n/2, with 211 ] 71 mesh points, assuming20rS,axisymmetry with respect to z-axis and mirror symmetry
with respect to the plane z\ 0. The mesh spacings at r \

and are 2.6 ] 10~3 and respectively,1.1rS r \ 20rS rS 0.52rS,and the mesh angular spacing along the polar direction is
2.2] 10~2 rad. A radiative boundary condition is
employed at andr \ 1.1rS r \ 20rS :

u0n`1\ u0n ] u1n`1[ u1n , (26)

where superscripts n ] 1 and n indicate the time step
number and the subscripts 0 and 1 show the boundary and
its neighbor mesh points, respectively. The computations
were performed on SX-4 supercomputers with 300 mega-
bytes internal memory and required 7 hr of CPU time for
about 6000 time steps with 211 ] 71 mesh points.

4.2. Jet Formation in a Free-Fall Corona
Figure 6 shows the time development of the jet formed in

a free-fall corona with a uniform magnetic Ðeld B0\
Here is the proper mass density of the0.3(o0 c2)1@2. o0corona at These Ðgures show the proper massr \ 3rS.density (color), velocity (vector), and magnetic Ðeld (solid

lines) in The black0 ¹ R4 sin h ¹ 10rS, 0 ¹ z¹ 10rS.regions indicate the black hole inside the event horizon
Figure 6b shows a snapshot at after ther \ rS. t \ 10qS,inner edge of the disk has rotated a quarter cycle of circular

orbit, where is deÐned as The coronal plasmaqS qS 4 rS/c.falls rapidly into the black hole, dragging the magnetic
Ðeld with it and strongly bending the Ðeld lines near the
black hole. The disk also drags the magnetic Ðeld in the
azimuthal direction, transferring angular momentum out-
ward in the process and falling toward the black hole. At

the inner edge of the disk enters into the unstablet \ 40qS,orbit region (see Fig. 6c). However, the advectionr ¹ 3rS

Ñow in the unstable orbit region stops at and ther D 2rS,plasma in the surface layer of the disk begins to be ejected in
the z-direction around the point. The dense disk gas extends
along with the ejected gas into the corona perpendicularly
to the disk.

In the Ðnal stage a jet is formed from the inner(t \ 52qS),edge of the disk after the edge has rotated more than one
cycle (Fig. 6d). The maximum poloidal velocity of the jet is
subrelativistic, D(0.2È0.3)c. The total velocity is 0.38c and
exceeds the escape velocity in the corona. We Ðnd the dense
plasma spreads along the jet. It is remarkable that the jet is
formed even in the free-fall corona and that the magnetized
Keplerian disk continues to exist near the black hole r D

The magnetic Ðeld near the black hole becomes(2È3)rS.radial owing to the fast infall of the plasma.
Next we investigate the mechanism and structure of the

jet that forms. Figure 7 shows the physical variables in the
Ðnal stage at z\ 0. Initially, the disk was stationary, but by
this stage it is falling into the central object rapidly. The
disk accretion Ñow is supersonic : the sound velocity at r \

for example, is 0.13c (so the Mach number4rS, M
D

D 2).
This supersonic accretion Ñow then is stopped by a centrifu-
gal barrier (at to form a shock wave at Ther D 2rS) r \ 3rS.strength of the shock is where and are theo

d
/o

u
\ 1.4, o

d
o
uproper mass density at down-stream and up-stream of the

shock, respectively. As expected, the Ñow down-stream of
the shock wave is subsonic where the sound velocity is 0.22c

The high pressure is caused by shock and adia-(M
D

D 0.9).
batic heating due to the strong deceleration of the Ñow,
which yields the relativistic region (p D oc2). As we show
later, this high pressure is one of the main sources of jet
formation energy. Here we note that the magnetic Ðeld pres-
sure is much smaller than the gas pressure p except nearB

z
2

the inner edge of the disk (Fig. 7a).
Figure 7b shows the power in the gas pressure and elec-

tromagnetic forces that is used to accelerate or decelerate
the plasma motion

Wgp4 [¿ Æ $p , (27)

WEM4 ¿ Æ (E ] J Â B) , (28)

in the Ðducial observer frame (see Appendix B). The plots of
and show the power contribution for deceler-[Wgp [WEMation of the plasma, in particular, the accretion disk itself. It

is natural that the deceleration by the gas pressure is signiÐ-
cant at the shock front at Below the shock, theRD 3rS.deceleration e†ect decreases drastically and the infall veloc-
ity increases again. However, owing to the centrifugal
barrier, the plasma stops almost completely at (Fig.r \ 2rS7d). Both the gas pressure and the electromagnetic forces
decelerate the plasma (Fig. 7b), but above the reverse shock
the deceleration by the electromagnetic force is somewhat
larger than that of the gas pressure over the wide(R[ 3rS),region, This electromagnetic force is due to theR¹ 6rS.magnetic tension of the strongly bent magnetic Ðeld lines.
Based on these facts, the centrifugal force, shock deceler-
ation, and magnetic tension cause a drastic interruption of
the disk accretion into the black hole. This interruption is
an important step in the formation of the jet. As shown in
Figure 7d, the rotation region of the plasma extends to(vÕ)This means that the disk edge accretes to the pointr \ 2rS. and then stops falling at the point instantly. Ther \ 2rS
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FIG. 6.ÈTime evolution of the jet formation in a transonic free-fall (steady state falling) corona with an initially uniform magnetic Ðeld. The fan-shaped
black region indicates a black hole. The solid lines are magnetic Ðeld lines. The color shows the proper mass density in a logarithmic scale. The vector plots
show the Ñow velocity. A vector with unit length corresponds to light velocity. Near the horizon, the velocity is almost light speed. (a) The initial condition.
The coronal plasma distribution is given by the transonic solution with !\ 5/3, H \ 1.3. The sonic point is located at The disk rotates around ther \ 1.6rS.black hole with Keplerian velocity. The density of the disk is 100 times that of the corona. (b) The free-fall corona drags and bends the magnetic Ðeldt \ 10qS.lines near the black hole. (c) The strong deceleration of the accretion of the disk plasma is seen at (d) The jet is formed almost alongt \ 40qS. r \ 3rS. t \ 52qS.the magnetic Ðeld. The maximum poloidal velocity of the jet is subrelativistic, (0.2È0.3)c. However, the total velocity is 0.38c and clearly beyond the escape
velocity from the black hole. The distance and the time are in units of and respectively.rS qS4 rS/c,

magnetic Ðeld is compressed by the disk edge very strongly
(Fig. 7c). This magnetic pressure also contributes to the
halting of the disk infall. Below the watershed point at r D

the gas is accelerated rapidly to relativistic velocities2rS,

near the horizon, (Fig. 7d). The drastic deceler-R¹ 1.7rSation and the rapid acceleration create an inner edge to the
high-density region, which may corresponds to the edge
observed by X-rays (Bromley et al. 1998).
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FIG. 7.ÈVarious physical quantities on the equatorial plane, z\ 0 at in the free-fall (steady state falling) corona case. (a) Proper mass density ot \ 52qS,(solid line), proper pressure p (dashed line), and magnetic Ðeld energy (dotted line). (b) The power contribution of the gas pressure, (dashed line), andB
z
2/2 Wgpthe electromagnetic force, (solid line), to evaluate the deceleration e†ect of the accreting disk plasma. (c) The components of the magnetic Ðeld, andWEM BÕ B

z
.

(d) The components of the velocity, and We can see the shock front atv
R
, v

z
, vÕ. r \ 3rS.

Figure 8 shows the physical variables along the line z\
at The positive axial component of the veloc-5.6rS t \ 52qS.ity shows that the jet spreads in the region :v
z
[ 0 3.4rS¹(Fig. 8d). Figure 8a shows that the jet has a two-R¹ 5rSlayered shell structure. The inner part of the jet (3.4rS ¹

has high density and pressure compared to theR¹ 4.3rS)outer part Figure 8b shows the power(4.3rS¹ R¹ 5rS).contribution of the gas pressure (dashed line) and the elec-
tromagnetic force (solid line), and respectively. WeWgp WEM,
Ðnd that the inner part of the jet is accelerated by the gas
pressure and the outer part by the electromagnetic force.
Therefore, we call the inner part the gas-pressureÈdriven jet
and the outer part the magnetically driven jet. This two-
layer shell structure is also found in the hydrostatic corona
case (Koide, Shibata, & Kudoh 1998), as shown in detail in
the following ° 5. It is natural that the gas-pressureÈdriven
part of the jet has high pressure (Fig. 8a) and that the elec-
tromagnetically driven part has the large magnetic Ðeld BÕ,(Fig. 8c) and the large azimuthal velocity (Fig. 8d).B
z

vÕThe magnetic Ðeld component accelerates the jetBÕthrough a magnetic pressure gradient, and the azimuthal

velocity accelerates via centrifugal force. These charac-vÕteristics of the outer jet are the same as those of the nonrela-
tivistic MHD simulation of the magnetically driven jet
(Shibata & Uchida 1986). However, the inner jet driven by
the gas pressure has never been found in nonrelativistic
simulations of the thin-disk model, while in the thick-disk
model, similar pressure-driven jets have been reported
(Molteni, Lanzafame, & Chakrabarti 1994 ; Bell & Lucek
1995)

To clarify the acceleration structure of the magnetically
driven jet, we plot the physical variables almost along the
jet at (Fig. 9). The point z\ 0 is located at theR\ 4.5rSequatorial plane. As shown in Figure 9a, the density in the
disk is high, and the pressure and the magnetic Ðeld com-
ponent are almost constant. Figure 9b shows that the elec-
tromagnetic force accelerates the jet at and2.5rS¹ z¹ 7rSwe can see the increase of the jet velocity (Fig. 9c). Thisv

zpart of the jet corresponds to the outer jet part. A decrease
in at occurs because the jet does not yet reach thev

z
8rS ¹ z

steady state. Figure 9d shows the velocity theAlfve� n vA,
sound velocity and the poloidal component of the veloc-v

s
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FIG. 8.ÈVarious physical quantities on the surface at in the free-fall (steady state falling) corona case. (a) Proper mass density o (solidz\ 5.6rS t \ 52qSline), proper pressure p (dashed line), and magnetic Ðeld energy (dotted line). The jet is located around (b) The power contribution of the gasB
z
2/2 R\ 3.8rS.pressure, (dashed line), and the electromagnetic force, (solid line), to evaluate the acceleration of the jet. We can clearly see the two-layer accelerationWgp WEMregion in the jet. (c) The components of the magnetic Ðeld, and (d) The components of the velocity, and The jet spreads throughBÕ B

z
. v

R
, v

z
, vÕ.3rS ¹R¹ 5rS.

ity The poloidal velocity increases in the magneticallyv
p
.

driven region However, it does not exceed3.5rS\ z\ 7rS.the velocity nor the sound velocity Note thatAlfve� n vA v
s
.

the magnetically driven jet comes from the corona. We can
also see the weak gas-pressureÈdriven region at 7rS ¹ z¹

which corresponds to the inner part of the jet. In this9rS,cross section, the pressure-driven power is too small to
show the acceleration clearly, while at the other part (RD

pressure-driven power is more dominant than the3.8rS)magnetically driven power, as shown in Figure 8b. The
structure of the inner, gas pressureÈdriven jet is the same as
that in the hydrostatic equilibrium coronal case (Koide et
al. 1998), and the details are shown in ° 5.3.

We also examine the jet ejection rate and the accretion
rate of this case at To compute these values, wet \ 52qS.calculate the inÑow and outÑow across the cylinder surface

The accretion rate and the mass-lossR\ 8rS, z\^8rS.rate are and respectively.M0 ac \ 22o0 rS2/qS M0
j
\ 5.8o0 rS2/qS,Therefore the transformation rate of the disk gas to the jet is

The accretion rate will be comparedM0
j
/M0 ac\ 0.26. M0 acwith the observation in ° 6.

4.3. Parameter Dependence
To investigate the jet formation mechanism, we per-

formed parameter surveys of the pressure (H), the mass
density of the disk and are the proper(g

D
4 o

D
/o

c
, o

D
o
cmass density of the disk and the corona, respectively), and

the magnetic Ðeld (B0).Table 1 summarizes the results of the simulations in the
transonic free-fall corona cases. Here vpres and are thev

p
pres

total and poloidal velocities of the pressure-driven jet,
respectively, and vmag and are those of the magneticallyv

p
mag

driven jet. The dimensionless parameters Emag4 (vA/vK)2
and are also shown for readerÏs convenienceEth4 (v

s
/vK)2/!

(e.g., see Kudoh & Shibata 1997a). Case A is the standard
case, which already has been shown in the previous sub-
sections. The velocities of all cases are measured at t \ 50qS.In all cases, the total velocity, vpres is comparable to the
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FIG. 9.ÈVarious physical quantities of the free-fall (steady state falling) corona case on the surface at (a) Proper mass density o (solidR\ 4.5rS t \ 52qS.line), proper pressure p (dashed line), and components of the magnetic Ðeld energy, (long-dashed line) and (dotted line). (b) The power contribution ofBÕ2/2 B
z
2/2

the gas pressure, (dashed line), and the electromagnetic force, (solid line), to evaluate the acceleration of the jet. The magnetically driven regionWgp WEMcorresponds to the outer part of the jet. The pressure-driven region is the inner part. (c) The components of the velocity,4rS ¹ z¹ 7rS 7rS¹ z¹ 9rS v
R
, v

z
,

and (d) The velocity, the sound velocity, and the poloidal component of the velocity, The poloidal velocity, gradually increases in thevÕ. Alfve� n vA, v
s
, v

p
. v

p
,

magnetically driven region, but does not exceed both the sound and velocities.7rS¹ z¹ 9rS, Alfve� n

poloidal component of the jet velocity, for the gas-v
p
pres

pressureÈdriven jet, while the poloidal velocity, isv
p
mag

smaller than almost half of the total velocity, vmag for the
magnetically driven jet. This is a reasonable result, because
the pressure can accelerate the gas only in the poloidal
direction owing to the assumption of symmetry in the azi-
muthal direction /. On the other hand, the energy of the
magnetically driven jet originates from the azimuthal
kinetic energy, and the azimuthal velocity of the magneti-
cally driven jet remains Ðnite in our results. Note that the
velocities of the pressure-driven jets, vpres are smaller than
the total velocities of the magnetically driven jets, vmag in
almost all cases. On the other hand, the poloidal velocities
of the pressure-driven jets, are larger than those of thev

p
pres

magnetically driven jets, except the case D.v
p
mag

The dependence on the disk density (cases B, A, and C)g
Dshows that the velocity (both total and poloidal velocities)

increases as the disk density increases both for the pressure-

driven and the magnetically driven jets. This comes from
the fact that the total kinetic energy of the heavier disk is
larger than that of the lighter disk. Note that the maximum
velocity of the jet in all cases is subrelativistic, (0.3È0.4)c.

The dependence on the initial magnetic Ðeld strength B0(cases D, A, E, and F) shows that the pressure-driven jets
are accelerated faster as increases. On the other hand,B0the velocity (both total and poloidal velocities) of the mag-
netically driven jet decreases as increases. The fasterB0pressure-driven jet is explained as follows : a stronger mag-
netic Ðeld decelerates the accretion disk more rapidly and
forms a higher pressure region near the centrifugal water-
shed ; this higher pressure produces faster acceleration. The
slower, magnetically driven jet is opposite to that expected
by the steady state theory. The reason is not clear, but may
be related to time-dependent e†ects. For a long enough
simulation, a steady state should occur and the theoretically
predicted dependence on should be found. With theB0
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TABLE 1

PARAMETER DEPENDENCE IN THE FREE-FALL (STEADY STATE FALLING) CORONA CASES

Di†erent vppres vpres vpmag vmag
Casea Parameter (c) (c) (c) (c) Emag Eth

(1) (2) (3) (4) (5) (6) (7) (8)

A . . . . . . Standard 0.22 0.22 0.15 0.30 0.75 ] 10~2 1.2] 10~2
B . . . . . . gD \ 50 0.13 0.15 0.09 0.30 1.5 ] 10~2 2.4] 10~2
C . . . . . . gD \ 200 0.24 0.26 0.20 0.32 0.37 ] 10~2 0.62] 10~2
D . . . . . . B0\ 0.25 0.12 0.17 0.17 0.30 0.51 ] 10~2 1.3] 10~2
E . . . . . . B0\ 0.4 0.23 0.24 0.13 0.30 1.3 ] 10~2 1.2] 10~2
F . . . . . . B0\ 0.5 0.22 0.24 0.10 0.27 2.1 ] 10~2 1.2] 10~2
G . . . . . . H \ 1.05 0.34 0.35 0.18 0.37 0.75 ] 10~2 0.31] 10~2
H . . . . . . H \ 1.1 0.28 0.36 0.14 0.34 0.75 ] 10~2 0.48] 10~2
I . . . . . . . H \ 1.35 0.21 0.24 0.11 0.32 0.75 ] 10~2 1.4] 10~2

NOTE.ÈCase A is considered the control and H \ acM1 ] !p/(g
D

4o
D
/o

c
\ 100, B0\ 0.3,

[(![ 1)oc2]N\ 1.3), and the other cases di†er from case A in only one parameter, which is
noted in column (2). Col. (3) : Poloidal component of the velocity of the pressure-driven jet at

Col. (4) : Velocity of the pressure-driven jet at Col. (5) : Poloidal velocity oft \ 50qS. t \ 50qS.the magnetically driven jet at Col. (6) : Velocity of the magnetically driven jet att \ 50qS.Col. (7) : at z\ 0 in the initial disk. Col. (8) :t \ 50qS. Emag 4 (vA/vK)2 r \ 3rS, Eth 4 (v
s
/vK)2/!

at z\ 0 in the initial disk.r \ 3rS,a Cases : A, standard case ; B, light-disk ; C, heavy-disk ; D, weak magnetic Ðeld ; E, moder-
ately strong magnetic Ðeld ; F, strong magnetic Ðeld ; G, very low pressure ; H, low-pressure ; I,
high-pressure.

present code, it is difficult to perform a long-term calcu-
lation (several hundred Very strong magnetic Ðeld casesqS).are also problematic because of difficulties near the inner
boundary.

The di†erent cases of coronal pressure (i.e., speciÐc enth-
alpy H ; cases G, H, A, and I) indicate that, for both the
pressure-driven and magnetically driven jets, a faster jet is
ejected when H is lower. In our simulations, the pressure of
the disk is balanced with the corona. Therefore in the low-
pressure corona case, resistance to the plasma motion is
smaller while the high pressure at the centrifugal barrier
remains the same, resulting in a faster jet.

5. JET FORMATION IN A MAGNETIZED DISK WITH A

HYDROSTATIC CORONA

To compare relativistic and nonrelativistic calculations
(Shibata & Uchida 1986) directly, we also computed the
hydrostatic corona case (Koide et al. 1998). This could
occur in situations with strong radiation near the horizon,
resulting in a balance between radiation pressure and
strong gravity (Rees 1984).

5.1. Initial and Boundary Conditions
In this section, the coronal plasma is assumed to be in

hydrostatic equilibrium (Fig. 10a), where the proper sound
velocity is constant The accretion disk is located(v

s
\ 0.41).

at o cot h o¹ 0.125, and rotates around ther º r
D

\ 3r
sblack hole with the Keplerian velocity vK \ c/[2(r/rS[ 1)]1@2 (as in ° 3.5). In this case, the rotational velocity of

the disk is also 50% of light velocity at its inner edge (r \
and the mass density of the disk is 400 times that3r

s
, z\ 0),

of the background corona. As before, the magnetic Ðeld
threads the accretion disk vertically, and we use the Wald
solution (Wald 1974), as we did in the previous cases. At the
inner edge of the accretion disk, the proper velocityAlfve� n
is The simulations are also performed in thevA \ 0.015c.
region 0¹ h ¹ n/2 with 210] 70 mesh1.1rS ¹ r ¹ 20rS,points.

5.2. T ime Development in Relativistic and Nonrelativistic
Cases

Figure 10 shows the time development of the relativistic
jet in the black hole magnetosphere. These Ðgures show the
proper mass density (gray scale), velocity (vector), and mag-
netic Ðeld (solid lines) in The black0 ¹ R¹ 7rS, 0 ¹ z¹ 7rS.regions show the black hole inside the event horizon at the
Schwarzschild radius Note thatrS. vA,corona(r \ 3rS)\ 0.3c
and the plasma beta, in both theb(r \ 3rS) 4 pgas/pmag D 3.7
corona and the disk.

Figure 10b shows a snapshot at after the diskt \ 10qS,has rotated a quarter cycle. The wave propagatesAlfve� n
along the magnetic Ðeld lines from the disk and the front of
the wave reaches at this stage. The accretion diskzD 5.5rSthen loses its angular momentum as a result of magnetic
braking and begins to fall toward the black hole, as shown
in the vector plot of Figure 10b.

A jet begins to be ejected at the inner edge of the accre-
tion disk around zD 0 at after the diskRD 2rS, t \ 40qShas rotated one full cycle (Fig. 10c). The plasma in the
unstable region begins to fall into the black hole rapidly and
collides with the centrifugal barrier and/or the high-
pressure corona near the black hole. The plasma then is
compressed by this strong collision. Figure 10d shows the
Ðnal stage of this simulation at after the accretiont \ 91qS,disk has rotated more than two cycles. The jet grows signiÐ-
cantly and propagates almost along the global poloidal
magnetic Ðeld lines. The jet is ejected from zD 0.RD 2rS,The maximum poloidal component of the jet velocity
reaches to 0.88c (Lorentz factor 2.1) at RD 3.0rS, zD 3.5rS.It is remarkable that magnetic Ðeld lines are strongly
stretched and deformed by the jet. Figure 10d also shows
that the jet has a two-layered shell structure, consisting of
the inner fast and outer slow jets. Note also that there is
Ñow near the z-axis, which is not seen in the free-fall coronal
cases (compare Figs. 6d and 10d). This Ñow comes from the
hydrostatic corona, and is driven by compression of the
plasma near the black hole (RD 0, Similar ÑowszD 2rS).near z-axis are found in all nonrelativistic simulations with
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FIG. 10.ÈEvolution of the jet formation in a hydrostatic black hole magnetosphere. Black region indicates the black hole. The solid lines are magnetic
Ðeld lines. The gray-scale plots show the proper mass density in a logarithmic scale. The vector plots show the velocity. A vector with unit length corresponds
light velocity. (a) The initial condition. The coronal plasma is in hydrostatic equilibrium. (b) The rotating disk drags the magnetic Ðeld lines, and thet \ 10qS.large-amplitude, nonlinear wave propagates along the magnetic Ðeld from the disk. (c) The jet begins to be ejected from the inner edge of theAlfve� n t \ 40qS.disk. (d) The relativistic jet is formed almost along the magnetic Ðeld lines.t \ 91qS.

hydrostatic equilibrium coronal conditions (see Fig. 11 ;
Uchida & Shibata 1985 ; Shibata & Uchida 1986). However,
this Ñow may be unrealistic owing to the unlikely scenario
of a hydrostatic corona near a black hole.

Figure 11 shows the result of a nonrelativistic simulation
at for comparison with the rela-(v

s
\ 0.005c) t \ 100q0

tivistic simulation (Fig. 10d). Here is deÐned(v
s
\ 0.5c) q0by with a characteristic length andq0 4 r0/v0 r0\ r

D
/3

velocity where is the Keplerianv0 \ 10~2c\ 0.4VK, VKvelocity at the inner edge of the initial disk, Ther \ r
D
.

parameters in the nonrelativistic case are almost the same
as those in the relativistic one except for the light velocity.
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FIG. 11.ÈNonrelativistic jet formation at wheret \ 100q0, q04 r0/v0,and The gray-scale plot shows the proper massv0\ 10~2c, r0\ r
D
/3.

density in a logarithmic scale. The vector is the velocity ; the scale normal-
ized by the light velocity is 100 times smaller than that of the relativistic
case (Fig. 10). The solid lines show the magnetic Ðeld. Only the magneti-
cally driven jet is formed. The maximum poloidal component of the veloc-
ity is where is the Keplerian velocity at the inner edge of theD0.4VK, VKinitial disk.

We normalize physical quantities by the proper sound
velocity of the corona the inner radius of the disk andv

s
, r

D
,

the proper mass density of the corona at The scale ofr \ r
D
.

the vectors in the Ðgure of the nonrelativistic case (Fig. 11),
when normalized by the light velocity, is 0.01 times that of
the relativistic case (Fig. 10). In the nonrelativistic case, the
material of the jet originates from the surface layer of the
disk, and the maximum poloidal component of the jet
velocity is which is smaller than that in the rela-D0.4VK,
tivistic cases. The accretion velocity is which is¹0.1VK,
much slower than that in the relativistic case (0.25cD

In the nonrelativistic case, we Ðnd that only mag-0.5VK).
netic forces accelerate the jet gradually, as in the model by
Shibata & Uchida (1986).

On the other hand, the relativistic jet in the hydrostatic
coronal case has a two-layered shell structure : slow (outer
layer) and fast (inner layer) jets as in the free-fall coronal
cases. The two jets are separated by the dense Ñow from

z\ 0 (Fig. 10d). This dense Ñow is a part of theR\ 2rS,pressure-driven jet. In the outer layer, the plasma is acceler-
ated by the magnetic force as in the Shibata & Uchida
(1986) model. The low-density part of the jet in the inner
layer is accelerated by the gas pressure, and it rapidly
reaches the relativistic speed (0.88c) within a short distance
(several This rapid acceleration is due to gas highlyrS).compressed by the strong gravity of the black hole below
the Schwarzschild stable-orbit limit of radius 3rS.

5.3. Mechanism and Structure of Relativistic Jet
To conÐrm the acceleration mechanism of the inner and

outer jet, we show the distributions of several physical

quantities across the jet at (Fig. 12). Thez\ 2.4rS, t \ 91qSjet region is identiÐed by the positive poloidal velocity v
R

[
0, As shown in Figure 12d, the jet is located atv

z
[ 0. 2rS¹It is clear that there are two peaks of the inner andR¹ 5rS.outer jet velocity. In the outer part, the power from the

electromagnetic force dominates the jet acceleration (Fig.
12b). The azimuthal component of the magnetic Ðeld is(BÕ)larger than the vertical component (Fig. 12c), and the(B

z
)

magnetic pressure dominates the gas pressure (Fig. 12a).
These characteristics are the same as in magnetically driven
jets in Newtonian MHD simulation model such as that of
Shibata & Uchida (1986), identifying it as a magnetically
driven jet. In the inner jet, the mass density and pressure are
high compared to the outer part (Fig. 12a), with the high
density material coming from the disk (Fig. 10). The power
of gas pressure is dominant in the inner jet (Fig. 12b), iden-
tifying this Ñow as pressure-driven. This jet is not found in
the corresponding Newtonian MHD simulation with the
thin disk (Fig. 11).

As described previously, the inner jet rapidly reaches a
relativistic speed within a small distance. (The maximum
poloidal component of the jet velocity is 0.88c and the accel-
eration distance is only several This rapid acceleration isrS.)a result of the rapid pressure increase due to a shock that is
formed inside the rapidly infalling disk (i.e., ““advection
dominated disk ÏÏ), drawn inward by the strong gravity of
the black hole below the last stable Keplerian orbit at r \

Figure 13 shows physical quantities along the equato-3rS.rial plane of the disk (z\ 0) for both the relativistic (panels
a and c) and nonrelativistic cases (panels b and d). In the
relativistic case, the accretion disk (high-density region) falls
into the black hole rapidly and its edge reaches near r D

(Fig. 13a). The accretion velocity, is as large as half1.7rS v
R
,

of the azimuthal velocity, because the disk plasma is invÕ,the unstable region of the Keplerian motion (Fig. 13c). A
shock (a kind of a reverse shock or a Mach disk) is formed
inside the rapidly falling disk, greatly increasing the gas
pressure and accelerating the disk plasma in both polar
directions along global poloidal magnetic Ðelds. Similar
shock and jet formation structure are found by Hawley &
Smarr (1985) using general relativistic hydrodynamic simu-
lations. On the other hand, in the nonrelativistic case, the
accretion velocity is much smaller than the azimuthal veloc-
ity (Fig. 13d). In this case, the strength of the shock in the
disk is much smaller than that of relativistic case so that the
gas pressure increase at the shock is weak (Fig. 13b). Conse-
quently, only a magnetically driven jet is formed in this case.

To conÐrm the acceleration structure of the relativistic
jet, we plot the physical variables almost along the jet at

(Fig. 14). The point at z\ 0 corresponds to theR\ 4.8rSequatorial plane. As shown in Figure 14a, the density of the
disk is high and that of the jet is also higher than the other
ambient gas. The higher pressure part is seen at 5rS\ z\

In this region, the magnetic pressure is low. This part8rS.corresponds to the gas-pressureÈdriven jet. The high mag-
netic pressure (low gas pressure) part is located at 3rS \

and corresponds to the magnetically driven jet.z\ 4.5rS,The di†erence in the acceleration mechanism of the two
regions is shown clearly by the power from the electromag-
netic force and the gas pressure (Fig. 14b). In the(WEM) (Wgp)gas pressure region the radial and axial(5rS\ z\ 8rS),components of the velocity are large, while the azimuthal
component is small (Fig. 14c). In the magnetically driven jet

the poloidal velocity exceeds the(3rS \ z\ 4.5rS), Alfve� n
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FIG. 12.ÈVarious physical quantities on the surface at (a) The proper mass density o, pressure p, and magnetic pressure, (b) Thez\ 2.4rS t \ 91qS. B
z
2/2.

power density W by the gas pressure (dashed lines) and the electromagnetic force (solid lines) to the jet. (c) Vertical and azimuthal components of theWgp WEMmagnetic Ðeld, and (d) Components of the velocity, andB
z

BÕ. v
R
, v

z
, vÕ.

velocity at In the gas pressure jetz[ 3.7rS. (5rS \ z\ 8rS),the poloidal velocity also exceeds both the andAlfve� n
sound velocities.

In spite of the vast di†erence in the initial corona condi-
tions, a similar jetÈwith a two-layered shell structureÈis
formed in both the free-fall and hydrostatic cases. A sche-
matic picture of the jet formation is shown in Figure 15.
Below the last stable Keplerian orbit the accretionr \ 3rS,disk falls into the hole rapidly. A reverse shock is formed in
the rapidly falling disk, and a fast jet is formed by the
extremely high pressure behind the shock front (gas-
pressure-driven jet). A magnetically driven jet is formed in
the outer layer of the gas-pressureÈdriven jet. The main
di†erence between the free-fall and the hydrostatic coronal
cases is the existence of direct accretion into the black hole
in the former case (heart-shaped region in Fig. 15a) but not
in the latter (Fig. 15b). This causes a di†erence in shock
strength, with the shock in the hydrostatic corona case
being stronger than that in the free-fall corona case and the
pressure-driven jet being faster as well.

The di†erence in the accretion of disk material into the
black hole also causes a di†erence in magnetic Ðeld conÐgu-
ration near the horizon. In the free-fall corona case mag-
netic Ðeld lines near the horizon become radial, whereas
they remain almost uniform near the black hole in the
hydrostatic corona case.

5.4. Parameter Dependence
To investigate the dependence of the jet velocity on the

disk density and the initial magnetic Ðeld(g
D

4 o
D
/o

c
) (B0),we performed simulations of Ðve cases (see Table 2). Table 2

shows the maximum velocities of each case and area at
Case J is the reference case for the parametert \ 70qS.survey. Case L is reported in the previous sections. The

dependence on the density of the disk (cases K, J, and L)
shows that the velocity (both total and poloidal velocities)
increases as the density increases for the pressure-driven jet.
This is the same tendency as in the free-fall coronal cases.
On the other hand, for the magnetically driven jet, the pol-
oidal component of the velocity, increases as the diskv

p
mag



FIG. 13.ÈPhysical variables at the equator for the relativistic case (a, c) and the nonrelativistic case (b, d) at and respectively. Panels at \ 91qS t \ 100q0,and b show the proper mass density o, proper pressure p, and magnetic pressure panels c and d show the accretion velocity azimuthal velocityB
z
2/2 ; v

R
, vÕ,and axial velocity In the relativistic case, the accretion disk falls into the black hole rapidly as a result of the strong gravitational force. The reverse shockv

z
.

wave is induced in the accretion disk at In the down stream, the extreme high-pressure region is formed and causes the relativistic jet, withr D 2rS.collimation by the magnetic Ðeld. In the nonrelativistic case, we do not Ðnd such strong shock structure, and only a magnetically driven jet is formed.

TABLE 2

PARAMETER DEPENDENCE IN THE HYDROSTATIC EQUILIBRIUM CORONA CASES

Di†erent vppres vpres vpmag vmag
Casea Parameter (c) (c) (c) (c) Emag Eth

(1) (2) (3) (4) (5) (6) (7) (8)

J . . . . . . . Standard 0.56 0.56 0.19 0.43 0.30 ] 10~2 0.51] 10~2
K . . . . . . gD \ 100 0.53 0.54 0.16 0.44 0.56] 10~2 1.0] 10~2
L . . . . . . gD \ 400 0.60b 0.60b 0.21 0.39 0.15 ] 10~2 0.26] 10~2
M . . . . . . B0\ 0.25 0.51 0.51 0.18 0.35 0.13] 10~2 0.51] 10~2
N . . . . . . B0\ 0.5 0.54 0.54 0.31 0.43 0.73] 10~2 0.48] 10~2

Nonrelativistic . . . . . . 0.35VK 1.5VK 0.23] 10~2 0.38] 10~2

NOTE.ÈCase J is considered the control and and the other(g
D

4o
D
/o

c
\ 200, B0\ 0.3, vs\ 0.41c),

cases di†er from case J in only one parameter, which is noted in column (2). Col. (3) : Poloidal component of
the velocity of the pressure-driven jet at Col. (4) : Velocity of the pressure-driven jet att \ 70qS. t \ 70qS.Col. (5) : Poloidal component of the velocity of the magnetically driven jet at Col. (6) : Velocity oft \ 70qS.the magnetically driven jet at Col. (7) : at z\ 0 in the initial disk. Col. (8) :t \ 70qS. Emag 4 (vA/vK)2 r \ 3rS,at z\ 0 in the initial disk.Eth 4 (v

s
/vK)2/! r \ 3rS,a Cases : J, standard case ; K, light-disk ; L, heavy-disk ; M, weak magnetic Ðeld ; N, strong magnetic Ðeld.

b At the Ðnal stage in this case the jet velocity reaches which was reported by(t \ 95qS), v
j
\ 0.88c,

Koide et al. 1998.
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FIG. 14.ÈVarious physical quantities of the equilibrium corona case on the surface at (a) Proper mass density o (solid line), properR\ 4.8rS t \ 91qS.pressure p (dashed line), and magnetic Ðeld energy, (dotted line). (b) The power contribution of the gas pressure, (dashed line), and the electromagneticB
z
2/2 Wgpforce, (solid line), to evaluate the acceleration of the jet. The magnetically driven region corresponds to the outer part of the jet. TheWEM 2rS\ z\ 4.5rSpressure-driven region is seen at (c) The components of the velocity, and (d) The velocity, the sound velocity, and the5rS\ z\ 8rS. v

R
, v

z
, vÕ. Alfve� n vA, v

s
,

poloidal component of the velocity, In the magnetically driven region, the jet is accelerated to which is larger than velocity. In thev
p
. v

p
º 0.4c, Alfve� n

pressure-driven region, the gas pressure rather than the magnetic force is dominant, because the sound velocity is much larger than velocity.Alfve� n

density increases, while the total velocity, vmag decreases.
The dependence of is the same as in the free-fall coronalv

p
mag

cases, while that of vmag is opposite. The later dependence of
vmag occurs because the rotational velocity, of the lightvÕdisk increases more rapidly than that of the heavy disk,
because of the more rapid fall of the lighter disk into the
inner orbit with the faster Keplerian velocity.

The maximum poloidal component of the velocity of the
magnetically driven jet increases as the initial magnetic Ðeld
increases, where a D 0.5È0.8 (see cases M, J, and N),v

j
PBa,

which is similar to the relation known for the magnetically
driven steady jets (Kudoh & Shibata 1995, 1997a, 1997b).
On the other hand, the velocity of the gas-pressureÈdriven
jet has no monotonic dependence on the initial magnetic
Ðeld. This is because in the case that the initial magnetic
Ðeld is stronger, the disk loses the angular momentum more
rapidly and falls toward the black hole faster. The gas pres-
sure in the shock region of the falling disk is larger, and the

gas-pressureÈdriven jet becomes faster when the magnetic
Ðeld is smaller than the critical value B

c
\ 0.4(o0 c2)1@2.

When the Ðeld is stronger than the magnetic draggingB
c
,

against the jet propagation (i.e., the deceleration J Â B
force) owing to highly deformed magnetic Ðeld lines deceler-
ate the jet as seen in Fig. 10d.

6. SUMMARY AND DISCUSSION

We performed GRMHD simulations of jet formation
from magnetized accretion disks around the nonrotating
black holes. Our numerical results are summarized as
follows :

1. We have developed the GRMHD code and tested it
using several fundamental cases such as the steady state
shock propagation and Keplerian motion in the steady
state falling corona.



FIG. 15.ÈSchematic picture of two-layered shell structure of relativistic jet. (a) The transonic free-fall (steady state falling) corona case, and (b) the
hydrostatic equilibrium coronal case.
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First, we summarize the results of the jet formation in the
steady state falling coronal cases.

2. When an accretion disk loses angular momentum by
magnetic stress, the disk falls into the central object.
However, it stops momentarily because of the centrifugal
barrier when the speciÐc angular momentum is greater than

where we neglect the pressure e†ect. At the centrifugal2rS c,
barrier, the pressure and density increase drastically, accel-
erating the disk plasma in the z-direction.

3. When little or no magnetic Ðeld is applied, the plasma
ejected from the disk falls into the black hole again.

4. When the magnetic Ðeld strength is strong enough, the
ejection is collimated by the magnetic Ðeld and some parts
become the fast jet owing to the combined acceleration
from gas pressure and magnetic forces.We call this ejection
the pressure-driven jet.

5. Outside of the pressure-driven jet, we found a region in
which plasma is accelerated by magnetic forces alone, called
the magnetically driven jet. That is, the whole jet has a
two-layered shell structure, with the inner part accelerated
by the high gas pressure and the outer part accelerated
magnetically as in the nonrelativistic jet studied by Bland-
ford & Payne (1983), Uchida & Shibata (1985), and Shibata
& Uchida (1986). In the free-fall coronal cases, the magneti-
cally driven jets are faster than the gas-pressureÈdriven jets.
The maximum velocity of the jet is subrelativistic, (0.3È0.4)c
in all cases. Unfortunately, the simulations had to be
stopped before they reached a stationary state, so we could
not compare our numerical results with the steady state
theory. The dependence of the jet velocity on the magnetic
Ðeld strength is di†erent from that of the theory.

6. As for the inner edge of the accretion disk, we empha-
size that there is no real edge to the accretion disk material.
However, the high pressure, dense region has an apparent
edge near the foot of the pressure-driven jet caused by the
watershed of the centrifugal barrier located at for a(2È3)rS,nonrotating black hole. In fact, X-ray observations show
that the inner edge is located at (Bromleyr

D
\ (2.6^ 0.3)rSet al. 1998). This could be explained by a critical point

located at 2rS\ r
D

\ 3rS.

Second, we summarize the results of the hydrostatic equi-
librium coronal cases.

7. To compare the relativistic and nonrelativistic simula-
tion of Shibata & Uchida (1986) directly, we perform the
simulation with the hydrostatic corona. The structure of the
formed jet is similar to that in the free-fall case. Namely, it
has the two-layered shell structure, whose inner and outer
parts are the gas pressure and magnetically driven jets,
respectively. In this case, the gas-pressureÈdriven jet is
much faster than the magnetically driven jet. The shock in
the disk within the unstable orbit region is so strong that
the pressure-driven jet is relativistic which is neverv

j
D 0.9c,

seen in the nonrelativistic calculations of the thin-disk
model. The outer part is the same as that in the nonrelativ-
istic simulations by Shibata & Uchida (1986). The param-
eter survey shows that the dependence of the jet velocity on
the magnetic Ðeld strength is consistent with the prediction
of the steady state theory (Kudoh & Shibata 1995, 1997a).

We have discussed some explanations of these results in the
previous sections (°° 4 and 5). However, further studies are
required to explain the results quantitatively. The rela-
tivistic theory should be developed to explain these results
in more general framework.

Let us brieÑy discuss application of our results to AGNs.
We examine the mass accretion rate of the case A. TheM0 acaccretion rate is The characteristic mass ofM0 ac\ 22o0 rS2 c.
the central object in an AGN is estimated as 109 M

_(Malkan 1983). The typical mass density is estimated byo0
o0\ 1017mH m5 a~1M8~1(2r/rS)~3@2 kg m~3 , (29)

where a, and are the mass of the ion, the accre-mH, m5 , M8tion rate normalized by Eddington rate, the Ñow viscosity
parameter, and the mass of the black hole normalized by
108 respectively (Rees 1984). When we assumeM

_
, m5 \ 0.1

and a \ 0.2, and it yields kg m~3.r \ 3rS, o0\ 1 ] 10~10
We get the accretion rate from the simulation, M0 ac \ 50

yr~1. This is consistent with the observationM
_

M0 ac\10È50 yr~1, which is determined by the spectral modelM
_Ðtting (Malkan 1983).

Standard relativistic theory of the jet and wind formation
(Camenzind 1986) states that even a relativistic jet will be
accelerated gradually only by magnetic forces. However,
our simulations show that rapid acceleration by gas pres-
sure near the black hole is also important in relativistic jet
formation. Furthermore, when the black hole rotates, as is
recently indicated by line-emission observations (Bromley,
Chen, & Miller 1997), the acceleration near the black hole
(in an ergosphere) should become more important, as pro-
posed by Cao (1997). A calculation using the Kerr metric,
which describes the spacetime of a rotating black hole, will
be performed in our future work (see Appendix C). It is also
interesting to compare our calculation with the obser-
vations of the line emission from near the Schwarzschild
stable-orbit limit (Tanaka et al. 1995). The evaluation will
be performed in our future work.

In this paper, we report the basic method of our
GRMHD simulation code, the test calculations and appli-
cation of the code to the jet formation from an accretion
disk around a nonrotating black hole. There are many
other phenomena related with black holes and magnetic
Ðelds. For example, one of the most mysterious phenomena
in astrophysics is c-ray burst, which may be explained by
the collision of the black hole and the strongly magnetized
(neutron) star (Ramaprakash et al. 1998 ; Kulkarni et al.
1998). This is our future work.
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APPENDIX A

FORMALISM OF GENERAL RELATIVISTIC MHD EQUATIONS

We present the 3 ] 1 formalism of GRMHD time evolution equations derived from equations (1)È(3). We observe the
vectors, such as velocity magnetic Ðeld B, and electric Ðeld E in the Ðducial coordinates,¿,

v
i
\ ch

i
Ui/c , (A1)

B
i
\ v

ijk
h
i
Fjk/J , (A2)

E
i
\ F0i/(h0 h

i
) , (A3)

respectively, where the indices i, j, and k run from 1 to 3. Here Lorentz factor c and Jacobian J are deÐned as c\ 1/[1 [
(v/c)2]1@2 and We use the conservative quantities in the Ðducial coordinates,J \ h1 h2 h3.

D\ co , (A4)

v\ (e] p)c2[ p [ Dc2] B2] E2/c2
2

, (A5)

P \ (e] p)c2¿/c2] (E ] B)/c2 , (A6)

and the stress tensor (opposite to the usual sign) (i, j \ 1, 2, 3),T ij4 h
i
h
j
T

g
ij,

T \ pI ] (e] p)c2
c2 ¿¿[ BB [ 1

c2 EE ]
AB2] E2/c2

2
B

I . (A7)

The magnetic Ðeld B and the electric Ðeld E are normalized as B \ B*/k1@2 and E \ E*/k1@2, respectively, where k is the
magnetic permeability and the quantity with an asterisk is in the MKSA unit system (SI unit). Using the normalized variables,
equations (1)È(3) are written as the conservation forms,

Lu
Lt

\ [q 9
C L
Lx1 (h0 b1 9 w1) ]

L
Lx2 (h0 b2 9 w2) ]

L
Lx3 (h0 b3 9 w3)

D
] h0 f , (A8)

where 9 is deÐned as

a 9 b 4

(

t

:

t

t

a1
<
a
n

)

t

;

t

t
9
(

t

:

t

t

b1
<
b
n

)

t

;

t

t
4

(

t

:

t

t

a1 b1
<

a
n
b
n

)

t

;

t

t
.

The time and the spatial derivative are clearly separated and these equations reduce to the classical MHD equations on the
nonrelativistic limit. Hence we call these 3 ] 1 formalism of the GRMHD equations. Here the matrices are deÐned as follows :

u 4 (D P1 P2 P3 v B1 B2 B3)T , (A9)

q 4 (1/J 1/J 1/J 1/J 1/J h1/J h2/J h3/J)T , (A10)

(b1, b2, b3) 4

(

t

:

t

t

t

t

t

t

h2 h3 h3 h1 h1 h2
h2 h3 h3 h1 h1 h2
h2 h3 h3 h1 h1 h2
h2 h3 h3 h1 h1 h2
h2 h3 h3 h1 h1 h2

0 h3 h2
h3 0 h1
h2 h1 0

)

t

;

t

t

t

t

t

t

, (A11)

(w1, w2, w3)4

(

t

:

t

t

t

t

t

t

Dv1 Dv2 Dv3
T 11 T 12 T 13
T 21 T 22 T 23
T 31 T 32 T 33

c2(P1 [ Dv1) c2(P2[ Dv2) c2(P3[ Dv3)
0 E3 [E2[E3 0 E1

E2 [E1 0

)

t

;

t

t

t

t

t

t

, (A12)
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f4

(

t

:

t

t
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t
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(v] Dc2)G01 ] G12 T 21]G13 T 31[G21 T 22[G31 T 33
(v] Dc2)G02 ] G23 T 32]G21 T 12[G32 T 33[G12 T 11
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c2(G01 P1] G02 P2] G03 P3)
0
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t

t

t

t

t

t

. (A13)

The curvature of the spacetime is described by

Gkl\ [(hk hl)~1(Lhk/Lxl) . (A14)

Furthermore, the frozen-in condition of equation (8) becomes

E \ [¿ Â B , (A15)

which is identical to the Newtonian case. The electric charge conservation law is yielded from equation (4),

Lo
c

Lt
] h0

J
;
i

L
Lxi

AJ
h
i
J
i

B
\ 0 , (A16)

o
c
\ 1

c2
h0
J

;
i

L
Lxi

AJ
h
i
E

i

B
, (A17)

where with four current density (J0, J1, J2, J3). The current density is explicitly written byo
c
\ h02 J0, J

i
\ h0 h

i
Ji(i\ 1, 2, 3)

J
i
\ ;

jk

h
i

h1 h2 h3
v
ijk

L
Lxj

(h0 h
k
B

k
) [ 1

c2
LE

i
Lt

. (A18)

The electric charge density and the electric current density J are normalized as and J \ k1@2J* , respectively.o
c

o
c
\ k1@2o

c
*

The Ðrst component of equation (A8) gives the mass conservation equation. The second, third, and foruth components
present the equation of motion. The Ðfth one is about the energy conservation law, and components from sixth to eighth
component express FaradayÏs law.

In the case of these equations reduce to the special relativistic equations with the general coordinates formally. Oneh0\ 1,
needs only add the gravitational term and factor into the special relativistic code to develop the GRMHD code from theh0special relativistic one. The reader may Ðnd that it is easy to develop the code. The following procedure is recommended for
developing the readerÏs GRMHD code.

1. Begin with making of the Newtonian MHD code on (three-dimensional) Cartesian coordinates by the Lax-Wendro† or
TVD scheme, etc.

2. Modify the code to a special relativistic one. Here one may use the Newton-Raphson method to solve equations (9) and
(10).

3. Modify the code to a special relativistic one with general coordinates. One may check the code by some simple problems
in cylindrical coordinates, for example nonrelativistic Keplerian motion.

4. Modify the code to a general relativistic one. Here one just adds the gravitational term and the factor to the previoush0version according to the equations in this Appendix. This modiÐcation is easy and takes less than 1 hr. Then one gets a (three-
dimensional) GRMHD code!

Here procedures (2) and (3) are interchangeable. This GRMHD code treats only nonrotating black holes. Using the method
described in Appendix C, one can extend the application of a GRMHD code to rotating black holes.

APPENDIX B

RELATIVISTIC EXPRESSIONS OF POWER

We derive the expression of the power evaluation from the pressure and electromagnetic forces to the motion of the (jet)
material. We consider the power in the Ðducial observer, and hence we use the special relativistic framework. In the special
relativistic framework, the equation of motion is

L
Lt
Ac2h

c2 ¿] 1
c2 E Â B

B
\ [$ Æ

Cc2h
c2 ¿¿] pI [ BB ] B2

2
I ] 1

c2
A

[ EE ] E2
2

I
BD

. (B1)

The Maxwell equations are
LB
Lt

\ [$ Â E , (B2)
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1
c2

LE
Lt

] J \ $ Â B , (B3)

1
c2 $ Æ E \ o

c
, (B4)

$ Æ B \ 0 . (B5)

Using the Maxwell equations, we have

$ Æ
C

BB [ B2
2

I ] 1
c2
A

EE [ E2
2

I
BD

\ o
c

E ] J ] B ] L
Lt
A 1
c2 E ] B

B
.

Then the equation of motion yields

L
Lt

(R¿)] $ Æ (R¿¿) \ [$p ] o
c

E ] J ] B , (B6)

where R4 c2h/c2. In the case of the nonrelativistic limit, this equation is reduced to the Newtonian equation of motion.
However, unfortunately, we cannot get an expression that corresponds to the kinetic energy equation in Newtonian mecha-
nics. Instead of that equation, we derive a similar conservation equation. Making a direct product of and the equation of¿/v
motion, we get,

L
Lt

(Rv)] $ Æ (Rv¿) \ ¿
v

Æ ([$p ] o
c

E ] J ] B) . (B7)

This equation is also written as

L
Lt
AR

2
v2
B

] $ Æ
AR

2
v2¿
B

] v2
2
CLR

Lt
] $ Æ (R¿)

D
\ ¿ Æ ([$p ] o

c
E ] J ] B) . (B8)

This later equation clearly is reduced to the Newtonian equation of the kinetic energy when we take the nonrelativistic limit
(p > oc2, v> c) and the conservation of mass density However, this equation is not of the conservationLo/Lt ] $ Æ (o¿) \ 0.
type, and hence we cannot take the Rv2/2 as the relativistic kinetic energy. We use the former conservation-type equation (B7)
to evaluate the power of the pressure and electromagnetic forces to the Ñuid motion. Then to evaluate the power contribution,
we use

S \ Spg] SEM

Spg 4
¿
v

Æ ([$p)

SEM4
¿
v

Æ (o
c

E ] J ] B) ,

where and are the contributions from the gas pressure and the electromagnetic force, respectively. To compare just theSpg SEMvalue of the gas pressure and the electromagnetic force contributions at a Ðxed point, we can use the familiar powers
and respectively. In the ideal MHD assumption, we can writeWpg 4[¿ Æ $p WEM4 ¿ Æ (o

c
E ] J ] B), E ] ¿ Â B \ 0,

because ofWEM4 ¿ Æ (J Â B) ¿ Æ (o
c
E)\ 0.

APPENDIX C

THE CALCULATION WITH KERR METRIC

Here we introduce a method for extending the code to the case of a rotating black hole, that is, a Kerr black hole. On the
normalization c\ 1 and G\ 1, the Kerr metric on the Boyer-Lindquist coordinates (x0, x1, x2, x3) \ (t, r, h, /) is written as

ds2 \ [h02(dt)2[ ;
i

2h
i
)

i
dxi dt ] ;

i
h
i
2(dxi)2 , (C1)
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where

h02\ 1 [ 2mr
&

, h12 \&
*

, h22\ & , h32\A
&

sin2 h ,

)3
h3

\ 2mar
A

, )1\ )2 \ 0 ,

*4 r2[ 2mr ] a2 , &4 r2] a2 cos2 h ,

A4 (r2] a2)2[ *a2 sin2 h .

Here m and a are the mass and the angular momentum per unit mass of the black hole. Note that *\ 0 gives the event
horizon and is static limit surface (Takahashi et al. 1990). To perform calculations with the Kerr metric,r \ r

H
h0\ 0 r \ r0we should modify the present GRMHD code as follows. Here we describe only the main procedure for developing a Kerr

GRMHD code. Details will be reported in a following paper.

1. We use the conservation quantities in the corotating frame (CRF) around a Kerr black hole. The expressions of the
conservation quantities and stress tensor (A4)È(A7) do not change when we modify the deÐnitions of the velocity electricv

i
,

Ðeld and four energy-momentum tensor T ab :E
i

v
i
\ h

i
c

Ui [)
i

h0@
, (C2)

Ei\ F
i0

h
i
h0@

] ;
j

)
j

h0@ h
i
h
j
F

ij
, (C3)

T ab \ ha@ hb@ T
g
ab [ )b ha@ T g

a0 [ )a hb@ T
g
b0 ] )a)b T

g
00 , (C4)

where indices i and j run from 1 to 3 and a and b run from 0 to 3, andc\ h0@ U0, h0@ \ (h02] )12 ])22] )32)1@2, hi
@ \ h

i
, )0 \ 0,

Other quantities, for example, the scalar quantities and magnetic Ðeld, don not change in form. Therefore the)
i
\ )

i
.

algebraic equations (9) and (10) are also used even in Kerr black hole calculation. We also use variables in the locally
nonrotating frame (LNRF) with a tilde, which are the same in form as those of the Schwarzschild metric case, for example,

andT3 ab \ ha@ hb@ T
g
ab F3 ab \Fab/(ha@ hb@ ).2. The left-hand side of the time evolution equation (A8) does not change.

3. The quantities in the right-hand side of equation (A8) should be replaced by those in the LNRF. We must also modify h0to The above procedure completes the equations of mass conservation and FaradayÏs law for the calculation in Kerrh0@ .
metric.

4. Concerning to the equation of motion, the tensor in the spatial derivative should be replaced by WeT3 ij T3 ij[ )
i
T3 0j/h0@ .also add the new source term

s
i
@\ [)12] )22] )32

h0@
G0iT3 00[ ;

j

A
)

i
G

ij
] 1

h
i
h
j

Lh
j
)

j
Lxi

B
T3 0j .

5. We have to add the new source term

s0@ \ [;
i

A)12] )22] )32
h0@

G0i T3 0i ]
)

i
s
i
@

h0@
B

[ ;
ij

1
h
j

L)
i

Lxj
T3 ij ,

to the energy equation.

To avoid the apparent singularity in the ergosphere, it is better to use instead of Then one obtains theG0i@ 4 (h0/h0@ )2G0i G0i.relativistic MHD code with Kerr metric. Note that the divergence-free condition of the magnetic Ðeld does not change, while
the electric source free condition should be modiÐed.

APPENDIX D

SIMPLIFIED TOTAL VARIATION DIMINISHING METHOD

Here we brieÑy explain the simpliÐed total variation diminishing (TVD) method. We consider a conservation equation
Lu(x, t)/Lt \ [Lw(u, x)/Lx in one dimension, where u and w are the m-dimension vector in general. The procedure of the
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simpliÐed TVD scheme is as follows (Davis 1984) :

u
j
(1)\ u

j
n [ i(w

j
n [ w

j~1n ) , (D1)

u
j
(2)\ 12 [u

j
n] u

j
(1)[ i(w

j`1(1) [w
j
(1))] ,

u
j
n`1\ u

j
(2)]D

j`1@2n [ D
j~1@2n ,

where i 4 *t/*x, the superscript n denotes the time step, and the subscript j indicates the mesh point. Here the last terms,
are deÐned as follows,D

j`1@2n ,

D
j`1@2n \ [K1 `(l, r

j
`) ] K1 ~(l, r

j`1~ )](u
j`1n [ u

j
n) , (D2)

l\ max
m

( o c
m

o )i ,

K1 B(l, rB) \ 0.5C(l)[1[ /(rB)] ,

/(r) \ 4
5
6
0
0
minM2r, 1N for r [ 0,
0 for r ¹ 0,

C(l) \ 4
5
6
0
0

l(1[ l) for l¹ 0.5,
0.25 for l[ 0.5,

r
j
`\ (*u

j~1@2n , *u
j`1@2n )

(*u
j`1@2n , *u

j`1@2n )
,

r
j
~\ (*u

j~1@2n , *u
j`1@2n )

(*u
j~1@2n , *u

j~1@2n )
,

*u
j`1@2n \ u

j`1n [ u
j
n ,

and is the speed of each wave, and the parenthese denote the usual inner product on Rm . This scheme is regarded asc
jLax-Wendro†Ïs scheme with an additional di†usion term. When we extend this scheme into a two-dimensional one by means

of the splitting method, a weak checkerboard numerical instability appears. To avoid this instability, we combine the two
coefficients and into a single coefficient deÐned asK1 ` K1 ~ K1

K1 (l, r`, r~) \ 0.5C(l)[1 [ /(r`, r~)] , (D3)

/(r`, r~)\ max [0, min (2r`, r~,1), min (2r~, r`,1)] .
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